Analysis of submitted breeding values and applied methods

M. Szydłowski, S. Mucha, M. Pszczoła, T. Strabel, A. Wolc

- Predict breeding values for young individuals without phenotypes
${ }^{-} 11$ teams provided results for qunatitative (QT) and 6 for binary trait (BT)

True Breeding Value

- QT:

TBV = \sum [3o additive QTLs] +

+ haplotype effects (QTLs pairs 31-32 and 33-34) +
+ the effects of imprinted QTLs (for males only).
- BT:

TBV $=\sum 22$ additive QTLs.

Methods used by Participants

- BLUP:
- PBLUP(pedigree; univariate and bivariate),
- TA-BLUP(specific relationship matrix),
- G(enomic)BLUP (univariate and bivariate)
- RR-BLUP - ridge regression
- Spatial
- Bayes A,B,C (univariate and bivariate)
- PLSR
- Double Hierarchical Generalized Linear Models (DHGLM)
- Machine learning: Support vector , Boosting, Genome-wide Rapid Association
- Accuracy - Pearson correlation between TBV and EBV
- Regression - linear regression coefficient TBV on EBV
- MSD - mean square difference (TBV-EBV) after correcting for mean

Comparison criteria cont.

- Ranking comparison:
- Shared - percentage of IDs shared between the groups of young individuals selected on TBV and EBV
- Loss - \% of loss of response to selection when 10% are selected based on EBV instead of TBV

Qtimas
 Accuracy of EBV - examples

Accuracy and regression

Shared

Loss (\%)

Ranking of the best group*methods based on all measurements

1. Nadaf et al. - BayesB SNP
2. Sun et al. - Bayes Cpi
3. Nadaf et al. - BayesB SNP+P
4. Zhang et al. - BayesB
5. Zhang et al. - TA-BLUP 500
6. Zhang et al. - TA-BLUP
7. Calus et al. - BayesC_bivar
8. Calus et al. - BayesC_univar
9. Calus et al. - BayesA_bivar

1o. Schulz-Streeck et al. - RR
11. Calus et al. - GBLUP_bivar
12. Schulz-Streeck et al. - Spatial
13. Calus et al. - BayeaA_univar
14. Calus et al. - GBLUP_univar
15. Shen et al. - DHGLM
16. Nadaf et al. - BLUP SNP+P
17. Nadaf et al. - BLUP SNP
18. Ogutu et al. - Boosting
19. Calus et al. - PBLUP_univar
20. Ogutu et al. - Support vector
21. Calus et al. - PBLUP_bivar
22. Zukowski et al. - GBLUP
23. Coster and Calus - PLSR

Accuracy and regression

 MSD

BT

 Loss (\%)

BT
 Ranking of the best group*methods based on all measurements

```
1. Calus et al. - BayesC_bivar
2. Calus et al. - BayesA_bivar
3. Nadaf et al. - BayesB SNP
4. Nadaf et al. - BayesB SNP+P
5. Calus et al. - GBLUP_bivar
6. Calus et al. - BayesC_univar
7. Calus et al. - BayesA_univar
8. Calus et al. - GBLUP_univar
9. Shen et al. - DHGLM
10. Nadaf et al. - BLUP SNP+P
```

11. Nadaf et al. - BLUP SNP
12. Zukowski et al. - GBLUP
13. Calus et al. - PBLUP_bivar
14. Calus et al. - PBLUP_univar
15. Coster and Calus - PLSR Summary

- For QT:
- BayesB, TA-BLUP, BayesC, RR-BLUP > GBLUP, Spatial, BayesA > PBLUP, Machine Learning
- For BT:
- BayesC, BayesB, BayesA, GBLUP > Other methods
- Bivariate > Univariate for the same method
- Bayes and TA-BLUP methods better for complex genetic architecture

Thank you for sharing the results !!!

Congratulations to the authors !!!

